New Way To Probe Interacting Molecules Reported
Article originally published in February, 2000
MADISON -- Taking a page from modern astronomy, where scientists are
making a raft of new discoveries by sampling starlight across the
electromagnetic spectrum, a group of chemists from the University of
Wisconsin-Madison has refined a powerful new way to probe the
molecular universe using infrared light.
Building on a technique known as infrared spectroscopy, the Wisconsin
chemists use two infrared lasers, choreographed to focus on a small
sample, to read the barely detectable but telltale vibrations of
molecules that can provide access to previously hidden but critically
important information.
The new technique, to be reported in the Feb. 14 issue of the
scientific journal Physical Review Letters, allows chemists to read
the fine print of the molecular world, the connections and fleeting
interactions within and between molecules. Such a perspective,
according to UW-Madison chemist John C. Wright, could lead to leaps
in our understanding of a host of scientific problems, from how some
bacteria thwart antibiotics to the weathering of soil.
Molecules are groups of two or more atoms connected by bonds that act
like springs. Through infrared spectroscopy, scientists can read the
vibrations, which act like fingerprints to identify a molecule.
Taking the technique an important step further, the Wisconsin team
has developed a way to use two infrared lasers to pluck two different
springlike bonds to get a picture of how all the different bonds in
the molecule are connected.
"The use of two infrared lasers to drive two different vibrational
modes to find the interconnections within and between molecules
promises a powerful new way to study biological systems," Wright
says. He says the new technique, essentially, is the long-sought
analog to two-dimensional nuclear magnetic resonance spectroscopy
(NMR), a mature technology that uses magnetic fields and energy from
certain radio frequencies to tease information from atoms and
molecules.
Wright is a UW-Madison professor of chemistry and, along with
UW-Madison colleague Wei Zhao, is an author of the PRL report.
The new technique is known as Doubly Vibrationally Enhanced (DOVE)
Four Wave Mixing. It employs lasers -- whose light is routed through
a maze of mirrors and lenses and focused onto a sample -- to
stimulate molecules of interest and capture spectral signatures that
can reveal the deft interplay of molecules at work.
"It's a new process that gives us a new tool," Wright says, "and the
important thing is that it can give you molecular information about
what's connected to what."
Like NMR, the method developed by Wright and Zhao tunes in to the
frequencies at which molecules vibrate. But instead of the radio
waves used in NMR, DOVE depends on the concentrated light pulses of
lasers to stimulate molecules and provide a window to molecular
connections.
At room temperature, molecules have natural oscillations whose
frequencies changes as molecules dock with one another.
"The vibrational frequency is a direct reflection of the bonding that
glues the atoms in a molecule or two different molecules together,"
Wright explains. "For example, when an enzyme is going to facilitate
a reaction, it needs to bond with the molecule it is going to change.
When it bonds, new vibrational modes appear that are characteristic
of the new bond."
But those oscillations, Wright notes, can also be driven by the force
of laser light, just as the motion of a child on a swing can be
altered with a gentle push.
"What we hope to be able to see is not only what's present in a
sample, but how they interact. How does an antibiotic bind and what
does it bind to?"
The answers to those kinds of questions are fundamental to
understanding critical questions in science. To see the molecular
details of how soil and rocks weather, for example, promise a better
understanding of how soils in some parts of the world become toxic as
aluminum accumulates through the process of weathering.
"It would be really nice to watch soil as it weathers and see what
interactions cause the soil to become toxic to plants," says Wright.
Another key project would be obtaining a more detailed molecular
picture of water, nature's most important solvent and a substance
present in virtually every reaction associated with life.
"Many people have studied water, but they still don't understand it,"
Wright says. "The most important question focuses on whether the
hydrogen bonds that link water together are strengthened if other
hydrogen bonds are already present."
The new technique, he says, may be able to answer that key question,
but it promises to be especially useful for looking at complex
materials such as proteins: "The structure of proteins can be
determined by measuring the vibrations, but (the data) can be
incredibly complex because each molecule is complicated."
DOVE Four Wave Mixing, says Wright, is applicable to virtually any
area of science or technology where vibrations can be measured, and
promises to shed new light on a host of scientific problems.
***
Writer: Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu
Contact: John C. Wright (608) 262-0351, wright@chem.wisc.edu;
|